Calculus A for Economics

Exercise Number 2

1) Compute both $f \circ g$ and $g \circ f$ for the following functions:
a) $f(x)=2 x+5 ; \quad g(x)=x^{2}$
b) $f(x)=\frac{1}{x} ; \quad g(x)=\frac{1}{x}$
c) $f(x)=e^{x+1} ; \quad g(x)=\ln x$
2) Compute $f \circ g \circ h$ for the following functions:

$$
\begin{aligned}
& \text { a) } f(x)=4 x-8 ; \quad g(x)=\frac{x}{4} ; \quad h(x)=\sqrt{x} \\
& \text { b) } f(x)=\frac{1}{x} ; \quad g(x)=e^{x} ; \quad h(x)=\sqrt{x} \\
& \text { c) } f(x)=\ln x ; \quad g(x)=x^{2}+3 ; \quad h(x)=\frac{1}{x}
\end{aligned}
$$

3) For the following functions, give a formal formula for $f^{-1}(x)$. Determine the domain of definition of $f(x)$ and $f^{-1}(x)$, and deduce for which values of x these functions are inverse to one another.
a) $f(x)=x^{2}+1$
b) $f(x)=\sqrt[3]{x^{2}+1}$
c) $f(x)=\frac{2 x+3}{x-1}$
d) $f(x)=10^{x+1}$
e) $f(x)=1+\ln (x+2)$
f) $f(x)=\frac{2^{x}}{1+2^{x}}$
4) For $x>0$ let $f(x)=\sqrt[n]{a-x^{n}}$. Show that $f(f(x))=x$. Find $f^{-1}(x)$.
5) Find the domain of definition of the following functions:
а) $y=\ln \frac{x}{4}$
b) $y=\log _{10} \frac{1-2 x}{4}$
c) $y=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$
6) Given the graph of the function $f(x)$, give a sketch of the function $f^{-1}(x)$. (See the file graph2)
7) Give a sketch of the function

$$
f(x)= \begin{cases}2 x+3, & x \leq 0 \\ x^{2}-1, & 0<x \leq 3 \\ \frac{1}{x}, & x>3\end{cases}
$$

8) For what values of a, b, c and d the function $f(x)=\frac{a x+b}{c x+d}$ satisfies $(f \circ f)(x)=x$.
9) Let $f(x)=x+1$. Find a function $g(x)$ such that $(f \circ g)(x)=(g \circ f)(x)$.
10) Find $f^{-1}(x)$ for the function

$$
f(x)= \begin{cases}-x^{2}, & x \geq 0 \\ 1-x^{3}, & x<0\end{cases}
$$

