Calculus A for Economics

Exercise Number 2

1) Compute both $f \circ g$ and $g \circ f$ for the following functions:

a)
$$f(x) = 2x + 5;$$
 $g(x) = x^2$
b) $f(x) = \frac{1}{x};$ $g(x) = \frac{1}{x}$
c) $f(x) = e^{x+1};$ $g(x) = \ln x$

2) Compute $f \circ g \circ h$ for the following functions:

a)
$$f(x) = 4x - 8;$$
 $g(x) = \frac{x}{4};$ $h(x) = \sqrt{x}$
b) $f(x) = \frac{1}{x};$ $g(x) = e^x;$ $h(x) = \sqrt{x}$
c) $f(x) = \ln x;$ $g(x) = x^2 + 3;$ $h(x) = \frac{1}{x}$

3) For the following functions, give a formal formula for $f^{-1}(x)$. Determine the domain of definition of f(x) and $f^{-1}(x)$, and deduce for which values of x these functions are inverse to one another.

a)
$$f(x) = x^2 + 1$$

b) $f(x) = \sqrt[3]{x^2 + 1}$
c) $f(x) = \frac{2x + 3}{x - 1}$
d) $f(x) = 10^{x+1}$
e) $f(x) = 1 + \ln(x + 2)$
f) $f(x) = \frac{2^x}{1 + 2^x}$

4) For x > 0 let $f(x) = \sqrt[n]{a - x^n}$. Show that f(f(x)) = x. Find $f^{-1}(x)$.

5) Find the domain of definition of the following functions:

a)
$$y = \ln \frac{x}{4}$$
 b) $y = \log_{10} \frac{1-2x}{4}$ c) $y = \frac{3}{4-x^2} + \log_{10}(x^3-x)$

6) Given the graph of the function f(x), give a sketch of the function $f^{-1}(x)$. (See the file graph2)

7) Give a sketch of the function

$$f(x) = \begin{cases} 2x+3, & x \le 0\\ x^2-1, & 0 < x \le 3\\ \frac{1}{x}, & x > 3 \end{cases}$$

8) For what values of a, b, c and d the function f(x) = ax+b/cx+d satisfies (f ∘ f)(x) = x.
9) Let f(x) = x + 1. Find a function g(x) such that (f ∘ g)(x) = (g ∘ f)(x).
10) Find f⁻¹(x) for the function

$$f(x) = \begin{cases} -x^2, & x \ge 0\\ 1 - x^3, & x < 0 \end{cases}$$